Taking 2022 gene count matrix through DESeq2 to enrichment with DAVID and revigo. Also, compared 2021 control vs exposed DEG list to the 2022 control vs exposed DEG list through to Revigo.

Notes

Some notes before getting into the details.

Something I’m unsure of is which result metric from DAVID to use to identify significantly enriched biological processes. Here’s the documentation from the DAVID webpage: https://david.ncifcrf.gov/content.jsp?file=functional_annotation.html#bonfer

2022 DEG lists Annotation –> Enrichment

R Code for DESeq2: paper-pycno-sswd-2021-2022/code/22-deseq2-2022.Rmd

R Code for Annotation: paper-pycno-sswd-2021-2022/code/23-annotating-deg-lists.Rmd

Control 6 vs exposed 6

6 controls (3 adults and 3 juveniles) vs 6 exposed (3 adults and 3 juveniles).

DEG list: paper-pycno-sswd-2021-2022/analyses/22-deseq2-2022/DEGlist_2022_controlVexposed.tab

6,237 DEGs.

PCA: img

Volcano: img

Heatmap of top 50 DEGs: img

Annotation

DEG annotated list: paper-pycno-sswd-2021-2022/analyses/23-annotating-deg-lists/DEGlist_2022_exposedVcontrol_annotated.tab

Enrichment

DAVID output (with genome blast uniprot accession IDs as background):

paper-pycno-sswd-2021-2022/analyses/24-2021-2022-enrichment/DAVID-2022-controlVexposed.txt

Here’s the significantly enriched processes:
Are they most significant?? I did it based on Bonferroni/Fold Enrichment.

Term Count % PValue List Total Pop Hits Pop Total Fold Enrichment Bonferroni Benjamini FDR
GO:0006511~ubiquitin-dependent protein catabolic process 94 2.14758967 4.19E-08 4107 156 10742 1.57602717 2.97E-04 2.29E-04 2.29E-04
GO:0016567~protein ubiquitination 167 3.81539867 6.47E-08 4107 314 10742 1.3910645 4.58E-04 2.29E-04 2.29E-04
GO:0002181~cytoplasmic translation 32 0.73109436 4.64E-07 4107 40 10742 2.09242756 0.00328165 9.83E-04 9.82E-04
GO:0006508~proteolysis 194 4.43225954 5.55E-07 4107 383 10742 1.32483991 0.00392559 9.83E-04 9.82E-04

REVIGO

Here’s what I put into REVIGO: paper-pycno-sswd-2021-2022/analyses/24-2021-2022-enrichment/2022-controlVexposed-forREVIGO.txt. GO terms and p-values for those with p-value <0.05. 89 terms.

Treemap list:
paper-pycno-sswd-2021-2022/analyses/24-2021-2022-enrichment/2022-controlVexposed_Revigo_BP_TreeMap.tsv

Treemap:
img

Control vs Exposed taking Age into account

Control Adults (n=3)
Control Juveniles (n=3)
Exposed Adults (n=3)
Exposed Juveniles (n=3)

DEG list: paper-pycno-sswd-2021-2022/analyses/22-deseq2-2022/DEGlist_2022_controlVexposed_withAge.tab

6,202 DEGs.

img

Annotation

DEG annotated list: paper-pycno-sswd-2021-2022/analyses/23-annotating-deg-lists/DEGlist_2022_exposedVcontrol_withAge_annotated.tab

Enrichment

DAVID output with genome blast uniprot accession IDs as background):

paper-pycno-sswd-2021-2022/analyses/24-2021-2022-enrichment/DAVID-2022-controlVexposed-withage.txt

Here’s the significantly enriched processes:
Are they most significant?? I did it based on Bonferroni/Fold Enrichment.

Term Count % PValue List Total Pop Hits Pop Total Fold Enrichment Bonferroni Benjamini FDR
GO:0002181~cytoplasmic translation 34 0.77237619 1.40E-08 4137 40 10742 2.20708243 9.96E-05 9.96E-05 9.96E-05
GO:0006511~ubiquitin-dependent protein catabolic process 93 2.11267606 1.51E-07 4137 156 10742 1.54795374 0.00106954 4.98E-04 4.98E-04
GO:0016567~protein ubiquitination 166 3.77101318 2.10E-07 4137 314 10742 1.37270769 0.00149374 4.98E-04 4.98E-04
GO:0006508~proteolysis 193 4.38437074 1.66E-06 4137 383 10742 1.30845311 0.01172974 0.00294977 0.00294811
GO:0006412~translation 100 2.27169468 1.56E-05 4137 184 10742 1.41117802 0.10520751 0.02223252 0.02222001

REVIGO

What I put into REVIGO: paper-pycno-sswd-2021-2022/analyses/24-2021-2022-enrichment/2022-controlVexposed-withage-for-REVIGO.txt. GO terms with p-value <0.05. 97.

Treemap table: paper-pycno-sswd-2021-2022/analyses/24-2021-2022-enrichment/2022-controlVexposed-withage-Revigo_BP_TreeMap.tsv

Treemap: img

Age contrast –> getting DEGs from above comparison that are related to age in the control vs exposed comparison

DEG list: paper-pycno-sswd-2021-2022/blob/main/analyses/22-deseq2-2022/DEGlist_2022_controlVexposed_ageContrast.tab

82 DEGs.

img

Annotation

DEG list annotated: paper-pycno-sswd-2021-2022/analyses/23-annotating-deg-lists/DEGlist_2022_exposedVcontrol_withAgeContrast_annotated.tab

Enrichment

DAVID output with genome blast uniprot accession IDs as background):

paper-pycno-sswd-2021-2022/analyses/24-2021-2022-enrichment/DAVID-2022-controlVexposed-agecontrast.txt

Significantly enriched processes:
NONE. See table linked above, but the values that aren’t p-values are too high.

REVIGO

What I put into REVIGO: paper-pycno-sswd-2021-2022/analyses/24-2021-2022-enrichment/2022-controlVexposed-agecontrast-forREVIGO.txt. GO terms with p-value <0.05. 4.

Treemap table: paper-pycno-sswd-2021-2022/analyses/24-2021-2022-enrichment/2022-controlVexposed-agecontrast-Revigo_BP_TreeMap.tsv

Silly treemap:
img

Comparing 2021 Control V Exposed DEGs to 2022 Control V Exposed DEGs

R Code: 25-compare-2021-2022.Rmd

Output folder: analyses/25-compare-2021-2022

DEGs unique to 2021

Used anti_join from dplyr:
DEGlist_unique_2021.tab

Enrichment:

Unique 2021 DEG uniprot accession IDs put in DAVID: analyses/24-2021-2022-enrichment/2021-DEGlist_uniprot_Accession_forDAVID.txt.

Background: analyses/24-2021-2022-enrichment/blast_uniprotAccession_forDAVID.txt

DAVID output:
analyses/24-2021-2022-enrichment/2021-unique-DAVID.txt. 98 GO terms.

KEGG Pathways:
analyses/24-2021-2022-enrichment/2021-unique-kegg-DAVID.txt.

REVIGO:
What I put into REVIGO: analyses/24-2021-2022-enrichment/2021-unique-for-REVIGO-GOpval.txt

Treemap table

Treemap: img

DEGs unique to 2022

Used anti_join from dplyr:
DEGlist_unique_2022.tab

Enrichment:

Unique 2022 DEG uniprot accession IDs put in DAVID: analyses/24-2021-2022-enrichment/2022-uniqueDEGs-uniprotacc-for-DAVID.txt

Background: analyses/24-2021-2022-enrichment/blast_uniprotAccession_forDAVID.txt

DAVID output:
analyses/24-2021-2022-enrichment/2022-unique-DAVID.txt. 93 GO terms.

KEGG Pathway:
analyses/24-2021-2022-enrichment/2022-unique-kegg-DAVID.txt.

REVIGO:
What I put into REVIGO: analyses/24-2021-2022-enrichment/2022-unique-forREVIGO.txt

Treemap table

Treemap:
img

DEGs same across 2021 and 2022:

Used inner_join from dplyr:
DEGlist_same_2021-2022.tab.

Enrichment:

DEGs same across 2021 and 2022 uniprot accession IDs put into DAVID: analyses/24-2021-2022-enrichment/2021-2022-same-degs-uniprot-acc-for-DAVID.txt.

Background: analyses/24-2021-2022-enrichment/blast_uniprotAccession_forDAVID.txt.

DAVID output:
analyses/24-2021-2022-enrichment/2021-2022-same-DAVID.txt. 211 GO terms.

KEGG Pathway:
analyses/24-2021-2022-enrichment/2021-2022-same-kegg-DAVID.txt.

REVIGO:
What I put into REVIGO: analyses/24-2021-2022-enrichment/2021-2022-same-forREVIGO.txt

Treemap table

Treemap
img